

Episódio:

"Meio Ambiente"

SINOPSE GERAL

Numa galáxia muito, muito, mas muito distante mesmo, existe um planeta chamado Kuont. Quando os habitantes de Kuont chegam à adolescência, eles têm que fazer uma viagem intergaláctica para conhecer outras formas de vida existentes no universo. Gabi, Beto, Buscador e Quati são de Kuont e escolhem a Terra para completar sua viagem de conhecimento. Para cumprir sua missão, eles precisam da ajuda de um terráqueo para entender como funciona a vida aqui na Terra. Para sorte dessa turma curiosa, eles encontraram uma pessoa muito especial, o Cleber. E para sorte do Cleber, ele conheceu novos amigos de outro planeta e passou a encarar sua vida de uma forma diferente.

SINOPSE DO EPISÓDIO

Gabi quer se livrar dos objetos que a fazem se lembrar de Timóteo. Ela se pergunta como fazem os terráqueos quando precisam jogar fora coisas que não querem mais. O Buscador, como sempre, se atrapalha em sua explicação e Gabi recorre a Beto e Cleber para conseguir uma resposta satisfatória. Beto visita uma ONG que trabalha com reciclagem para entender os diversos tipos de lixo que os terráqueos produzem e qual a melhor maneira de separá-los. Enquanto isso, o audacioso Quati procura por algo limpo em um planeta onde tudo é sujo.

NÍVEL DE ENSINO Ensino fundamental.

COMPONENTE CURRICULAR Matemática.

DISCIPLINAS RELACIONADAS

Ciências (Física e Geografia) e Artes Visuais.

CONCEITOS ABORDADOS NO EPISÓDIO

- Formas Espaciais: Cubos.
- ♣ Volume de Cubos e Paralelepípedos.
- Conceito de Densidade.
- ♣ Volume de objetos não regulares. Princípio de Arquimedes.
- Porcentagem.
- ♣ Grandeza Temperatura. Unidade de medida da Temperatura.
- Variação de Temperatura.
- Funcionamento do Pluviômetro.

Comentários dos autores sobre os conceitos abordados

Caro(a) professor(a), apresentaremos alguns comentários e sugestões de atividades para dar suporte à exibição do episódio "Meio Ambiente", da série "Os Exploradores de Kuont". Os episódios da série são divididos em três blocos e cada bloco aborda ao menos um conceito diferente de matemática básica.

No primeiro bloco no diálogo entre os personagens Beto e Cleber sobre a prensagem de latinhas em uma indústria de reciclagem, Cleber utiliza a matemática para mostrar a Beto que a melhor forma de se armazenar, estocar e transportar as latinhas usadas é através da prensagem delas em formato de cubo.

CLEBER

Uma informação boa de saber é que para se transportar as latinhas até as usinas é utilizada uma técnica muito interessante, que é a prensagem. Assim, as latinhas ocupam menos espaço no caminhão que vai transportá-las e no local onde elas serão estocadas. Nessa usina aí o pessoal prensa as latinhas em forma de cubo, porque essa forma tem um encaixe melhor.

BETO

Por que os terráqueos não usam essa técnica quando andam em ônibus, trens e metrôs lotados? Garanto que se todo mundo fosse prensado ia sobrar muito mais espaço e ninguém teria que brigar.

CLEBER

O problema é que a nossa vida é um pouco mais complexa do que isso. Em compensação, a vida das latinhas é muito mais simples, a prensagem torna o trabalho de empilhar e guardar muito mais fácil. Se as latinhas não fossem prensadas, ocupariam mais espaço. Mesmo assim, depois de prensadas, o peso de cada latinha é o mesmo de antes da prensagem.

BETO

Quer dizer que as latinhas de alumínio são espaçosas? Prensar as latinhas é uma forma de punição?

CLEBER

Não é bem por aí, Beto. Dá uma olhada na seguinte situação: aqui temos "x" latinhas antes de serem prensadas. Juntas elas têm um peso de "y" quilos e ocupam um volume de "z" metros cúbicos. Essas mesmas latinhas, prensadas, tem o mesmo peso, porém ocupam um volume de "w" metros cúbicos. Beto, você pode imaginar quantas caminhões seriam necessários para transportar as latinhas de alumínio se elas não fossem prensadas?

BETO

Nossa, o trabalho ia ser bem mais complicado.

Mais à frente, Cleber ensina a Beto que pesos iguais para objetos diferentes não implica que estes objetos possuam o mesmo volume, introduzindo assim o conceito de densidade de massa. Cleber aproveita e lança um desafio a Gabi utilizando a ideia do Princípio de Arquimedes para calcular o volume de objetos que não possuem uma forma geométrica definida.

BETO

Ei, Cleber, por que o tamanho de um quilo de latinhas é menor do que um quilo de garrafa PET?

CLEBER

Beto, essa é fácil. Agora, pra entender bem a gente precisa conhecer uma palavra nova: densidade. A densidade mede o grau de concentração de massa em determinado volume. E o que isso significa? Vamos usar as latinhas de alumínio e as garrafas PET para entender melhor. O alumínio compactado ocupa menos espaço do que as garrafas PET compactadas. Assim, se a densidade do alumínio é maior que a densidade do material de que são feitas as garrafas PET, o volume de um quilo de latinhas será menor do que o volume de um quilo de PET. Sacou? Agora, Gabi, eu tenho um desafio pra você resolver. Este desafio vai te ajudar a guardar melhor suas coisas, porque envolve volume. Utilizando um recipiente com água, eu quero que você meça o volume de um objeto que você recolheu nas suas pesquisas.

GABI

Ih, Cleber, acho que a porquinho se afogou!

CLEBER

Vou jogar uma boia pra ela. É muito simples. Veja o nível da água antes de colocar essa pedra dentro do recipiente. Agora, é só colocar a pedra lá dentro, de forma que ela fique completamente submersa como você fez, Gabi. Aí, veja para onde o nível da água foi. Pronto! Como o volume submerso é igual ao volume deslocado, você pode calcular o volume da pedra multiplicando a área da base do aquário pela variação do nível da água. É igual ao cálculo de volume de um paralelepípedo. Entendeu?

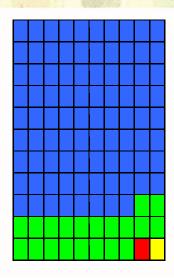
O primeiro bloco termina com o desafio proposto acima. Que tal propor algo parecido para seus alunos? Você pode experimentar diversos objetos, inclusive aqueles que possuem densidade menor do que a da água e não afundam, indagando aos alunos o que podemos fazer para medir o volume nesses casos. Muito importante aproveitar essa ideia para o cálculo do volume de um objeto qualquer. Professor(a), aproveite para fixar o cálculo do volume de paralelepípedos.

No segundo bloco, parte-se da composição da atmosfera para explicar o conceito de porcentagem. A representação gráfica é associada de forma direta, o que facilita a compreensão dos alunos.

CLEBER

Veja bem, a atmosfera é uma camada de gases que envolve o nosso planeta. Essa camada é composta de mais de 15 tipos diferentes de gases. O nitrogênio ocupa, aproximadamente, 78% da atmosfera, já o oxigênio contribui com 20% e o argônio com 1%. Os demais gases aparecem em quantidades bem pequenas.

BETO


Argônio! Eu gosto de Beto, mas se tivesse ouvido Argônio antes, talvez esse fosse meu nome Terráqueo. Agora já foi.

CLEBER

Não esquenta, Beto. A proporção desses gases, que eu mencionei, na atmosfera está apresentada em porcentagens. Fica ainda mais fácil de entender se você colocar estes dados da seguinte maneira: esse quadrado aqui contém 100 quadradinhos. Eles representam toda a atmosfera, ou seja, 100%. Como a quantidade de nitrogênio na atmosfera é de 78%, então vamos pintar, por exemplo, de azul, 78 desses 100 quadradinhos. Já a quantidade de oxigênio é de 20%. Aí, podemos pintar, de verde, mais 20 quadradinhos. Para representar a quantidade de argônio, que é de 1%, pintaremos de vermelho um quadradinho, e o último quadradinho, representa a soma das quantidades de todos os outros demais gases que aparecem em menor quantidade na atmosfera, pintaremos de amarelo.

CLEBER

Saiba também, Beto, que essas proporções não são fixas. Elas variam de acordo com alguns fatores, como por exemplo, as queimadas, que diminuem as proporções de alguns gases e aumentam as proporções de outros, como o CO₂ e o metano.

Mais à frente, Cleber propõe um desafio a Beto, pedindo que ele calcule a variação de temperatura no deserto do Saara. Esse trecho dá oportunidade para se explorar a subtração de números inteiros, ou seja, a adição algébrica.

CLEBER

Beto, eu tenho um desafio para você. No deserto do Saara, a temperatura pode chegar a 50°C de dia e - 5°C à noite. Eu quero que você peça ajuda ao pessoal para calcular a variação da temperatura num dia no deserto em que a temperatura máxima foi 49°C de dia, e a temperatura mínima foi -4°C à noite. Qualquer dúvida, eu estou aqui.

CLEBER

Beto, para calcular a variação de temperatura você verifica a diferença entre 49 menos 4, nessa ordem. Assim, terá 49 menos -4 [49 - (-4)], ou seja, 49 mais 4, que é igual a $53^{\circ}C$.

BETO

Menos, menos? Isso parece difícil de entender.

CLEBER

Beto, você pode pensar também de outra forma. É só você calcular a diferença de temperatura em cada termômetro e somar. Utilizando o 0°C como parâmetro, podemos ver que no primeiro termômetro a variação é de 49°C. Já no segundo termômetro a variação é de 4°C. Somando as duas variações, chegamos ao resultado de 53°C de variação de temperatura no deserto do Saara.

Finalmente, no terceiro bloco, Cleber fala do clima em nosso planeta, das estações do ano, da inclinação da Terra e do que é um pluviômetro, para que serve e toda a matemática envolvida. Esse trecho do episódio é propício para uma abordagem interdisciplinar com o professor de geografia.

CLEBER

Beto, o tempo está nublado, mas se chover, é bom estar preparado. Por exemplo, existe um aparelho capaz de medir a intensidade de uma chuva, chamado pluviômetro. Ele é um aparelho de meteorologia usado para recolher e medir a quantidade de chuva num local e num período determinado. Essa medida é chamada de índice pluviométrico. Se dissermos que o pluviométrico de um dia, em certo local, foi de 2mm, significa que, se tivéssemos nesse local um aquário vazio, com 1m² de base, o nível da água dentro dele teria atingido 2mm de altura naquele dia. É legal saber que, neste caso, cada milímetro corresponde a um litro. E por aí, Beto, está tudo azul?

BETO

Na verdade, o lugar é meio cinza... Bom, deixa pra lá. (...) E você, Cleber, tá na moda dessa estação?

CLEBER

Eu espero que sim, Beto. Mas a verdade é que eu não entendo muito de moda. Eu sei falar das estações do ano. Nosso planeta faz um ângulo de 23,5° de inclinação em relação ao plano da sua órbita, como um pião que gira inclinado ao redor de outro objeto, com seu eixo apontando sempre para o mesmo lado. Isto faz com que, em determinada época do ano, a luz solar incida com maior

intensidade sobre o hemisfério norte e, na outra parte do ano, incida com maior intensidade sobre o hemisfério sul. Da mesma forma, em outra época do ano, a luz solar incide de maneira igual sobre os dois hemisférios. E é por isso que dividimos o ano em quatro estações: primavera, verão, outono e inverno. O verão é a estação do ano com a maior incidência de luz do sol e o inverno é a estação com menor incidência.

BETO

É, eu ouvi falar em estações do ano quando uma mulher na rua disse que minha roupa não combinava com a estação. Eu achei que ela estava falando das estações do trem ou do metrô.

CLEBER

É, Beto, acho que ela não gostou do seu figurino. O que é uma bobagem, porque você imprime a sua personalidade nas suas roupas.

BETO

Obrigado.

CLEBER

Agora, Beto, é legal saber que no dia 21 de dezembro a Terra está inclinada com o hemisfério sul mais voltado para a direção do sol e de seus raios. O que isso significa? Que os dias são mais longos do que as noites, porque o hemisfério sul recebe os raios solares de forma mais direta e incisiva. Em compensação, no hemisfério norte, os dias são mais curtos do que as noites, porque os raios solares são mais brandos devido à inclinação da Terra.

Sugestões de atividades complementares

Atividade 1 – Desenho Geométrico – Construindo Embalagens.

Objetivo da atividade:

Explorar a relação entre o litro e o decímetro cúbico; uso de diferentes unidades de medida para grandezas volumétricas.

Descrição da atividade:

A aula "<u>Preparamos 1 litro ou 1 dm³ de suco?</u>" (VIEIRA et. al., 2011) disponível no <u>Portal do Professor</u>, auxilia os alunos a fixar a relação entre litro e decímetro cúbico. A primeira atividade explora essa relação. As atividades propostas podem ser realizadas após a apresentação do episódio "Meio Ambiente", da série "Os Exploradores de Kuont" e estão disponíveis em http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=28374.

A segunda atividade aborda as vantagens de captação de água da chuva e mostra o uso da matemática para a construção de uma cisterna. A terceira e última atividade dessa aula permite a promoção de um debate com os alunos sobre as questões de economia de custos devido a forma e aos materiais utilizados na construção do Cubo D'água (Centro Aquático dos Jogos Olímpicos de Pequim 2008).

Figura 1 – Cubo D'água

Fonte: http://www.achetudoeregiao.com.br/atr/Olimpiadas/cubo_d_agua.htm

Atividade 2 – Volume X Área Superficial: Uma Questão de Economia.

Objetivo da atividade:

Trabalhar com os conceitos de função, área superficial e volume; Demonstrar como a relação volume X área superficial pode afetar uma questão de economia; Demonstrar como pode ser feita uma análise que busca a otimização de recursos na produção de embalagens; Reconhecer a importância desse conhecimento em situações do dia a dia.

Descrição da atividade:

A aula "Volume X Área Superficial: Uma Questão de Economia" (HARTUNG & MEIRELLES, 2010) disponível no Portal do Professor, auxilia os aluno na definição e compreensão do conceito de volume de diversas figuras espaciais. As atividades propostas podem ser realizadas após a apresentação do vídeo. Elas podem ser obtidas na íntegra no Portal do Professor em http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=23391. O uso dessa aula em atividades do ensino fundamental precisará de adaptações, mas acreditamos que os professores encontrarão nessa aula, um ótimo referencial de ideias e organização de atividades.

A primeira atividade desta aula explora, com apoio de computação gráfica, a seguinte questão: "Dois sólidos geométricos com formas diferentes e volumes iguais têm, necessariamente, áreas superficiais iguais?". Na atividade seguinte, usa-se uma planilha eletrônica para se descobrir: quais devem ser o raio e a altura de um recipiente cilíndrico que tenha volume igual a 1,2 dm³ e que tenha a menor área superficial possível? A terceira atividade também usa a planilha para buscar "soluções ótimas¹".

Professor(a), esperamos que essa proposta tenha ampliado suas ideias. Gostaríamos de lhe convidar a se tornar autor dessa proposta conosco, ou seja, modifique a ordem, exclua ou inclua assuntos etc. O importante é adequar a proposta à realidade de sua turma. Caso queira compartilhar conosco sua opinião sobre este material ou informar como foi o uso com a sua turma deixamos os nossos contatos: filipe@ime.uerj.br e fernandovillar@ufrj.br. A avaliação desta dica pedagógica pelos professores brasileiros é muito importante para a rede da TV Escola.

Consultores: Filipe Iório da Silva Fernando Celso Villar Marinho

Referências

HARTUNG, G. E., MEIRELLES, R.. Volume X Área Superficial: Uma Questão de Economia. Portal do Professor, 2010.

Disponível em:

http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=23391.

VIEIRA, E. R. et al.. *Preparamos 1 litro ou 1 dm³ de suco?*. Portal do Professor, 2011. Disponível em:

http://portaldoprofessor.mec.gov.br/fichaTecnicaAula.html?aula=28374.

¹ Solução Ótima: é uma solução factível que fornece o melhor valor para função objetivo. Usada em problemas de programação linear.